Objectives for Function Composition Activity

- Compose two functions give algebraically, by a table, by a graph, in words
- Decompose a function into two (or more) functions
- Compose more than two functions
- Determine the domain of the composition of two functions
Function Composition

1. Given \(f(x) = 3x + 4, \ g(x) = x^2 + 1, \) and \(h(x) = \frac{2}{x-5} \) find:

a. \(f(g(0)) = \)

b. \(g(f(0)) = \)

c. \(f(g(2)) = \)

d. \(g(f(1)) = \)

e. \(f(g(x)) = \)

f. \(g(f(x)) = \)

g. \(h(f(x)) = \)

h. \(f(h(x)) = \)
2. Given that \(h(x) = f(g(x)) \), fill out the table of values for \(h(x) \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
<th>(g(x))</th>
<th>(h(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

3. Given that \(h(x) = f(g(x)) \), fill in the missing values

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
<th>(x)</th>
<th>(g(x))</th>
<th>(x)</th>
<th>(h(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>
4. Use the graphs below to evaluate:
 a) \(f(g(6)) = \) __________________________
 b) \(g(f(2)) = \) __________________________
 c) \(g(f(0)) = \) __________________________

5. Use the Graph of \(f \) and the table for \(g \) to evaluate the following:
 a) \(f(g(4)) = \) ______________
 b) \(g(f(2)) = \) ______________
 c) \(f(g(2)) = \) ______________
6. Let \(f(x) = x^2 + 1 \) and \(g(x) = 2x + 3 \).

a. \(f(7) = \) __________
b. \(g(3) = \) __________
c. \(f(g(3)) = \) __________

d. \(f(g(x)) = \) ___________________
e. \(g(f(x)) = \) ___________________

7. Use the words *input* and *output*, as appropriate, to fill in the missing blanks:

The function \(f(g(t)) \) uses the ______________ of the function \(g \) as the ______________ to the function \(f \). The function \(g(f(t)) \) uses the ______________ of the function \(f \) as the ______________ to the function \(g \).

8. Let \(u(x) = p(q(x)) \) and \(v(x) = q(p(x)) \) where \(p(x) = 3x - 4 \) and \(q(x) = x^2 + 5 \).

a. Calculate \(u(4) \) and \(v(4) \). Are they the same?

\[u(4) = \] _______
\[v(4) = \] _______

b. Find formulas for \(u(x) \) and \(v(x) \) in terms of \(x \). What can you conclude about the order of functions in doing a composition?

\[u(x) = \] ___________________

\[v(x) = \] ___________________
9. Let \(f(x) = x^2 + 3 \) and \(g(x) = 2x + 1 \).

a. \(f(7) = \)

b. \(g(3) = \)

c. \(f(g(3)) = \)

d. \(f(f(3)) = \)

e. \(f(g(x)) = \)

f. \(g(f(x)) = \)

g. \(g(g(x)) = \)
Decomposition of Functions

Just as we can compose two functions to create a new function, we can decompose a function into two separate functions, one being the input of the other.

Warm-up: Use the words *input* and *output*, as appropriate, to fill in the missing blanks:

The function \(f(g(t)) \) uses the ______ of the function \(g \) as the ________ to the function \(f \). The function \(g(f(t)) \) uses the ______ of the function \(f \) as the ________ to the function \(g \).

1. Let \(g(x) = \frac{1}{x + 1} \). Decompose \(g \) into functions, \(f \) and \(h \), such that \(g(x) = f(h(x)) \). [Do not use \(f(x) = x \) or \(g(x) = x \)]

 \[h(x) = \quad \]

 \[f(x) = \quad \]

2. Consider the composite function \(w(x) = \sqrt{1 + x^2} \).

 Find two functions (\(f \) and \(g \)) such that \(w(x) = f(g(x)) \). [Do not use \(f(x) = x \) or \(g(x) = x \)]

 \[g(x) = \quad \]

 \[f(x) = \quad \]
3. Consider the composite function \(w(x) = \sqrt{1 + x^2} \).

Find three functions \(f, g, \) and \(h \) such that \(w(x) = f(g(h(x))) \). [Do not use \(f(x) = x, g(x) = x, \) or \(h(x) = x \)]

\[h(x) = \text{________________________} \]

\[g(x) = \text{________________________} \]

\[f(x) = \text{________________________} \]

4. Now consider the composite function \(f(x) = 3(x - 1)^2 + 5 \). Decompose \(f \) into three functions, \(u, v, \) and \(w \), such that \(f(x) = u(v(w(x))) \). [Do not use \(u(x) = x, v(x) = x, \) or \(w(x) = x \)]

\[w(x) = \text{____________} \]

\[v(x) = \text{____________} \]

\[u(x) = \text{____________} \]

Can you see a way to decompose \(f \) into four functions? Demonstrate how to do it:
Domain of a Composition

When finding the domain of a composition we have to take into consideration the domains of the ‘inside’ and ‘outside’ functions as well as the domain of our composition. For example:

Given \(f(x) = x^2 \) and \(g(x) = \sqrt{x} \), then our two composed functions are
\[
\begin{align*}
 h(x) &= f(g(x)) = (\sqrt{x})^2 = x \\
 k(x) &= g(f(x)) = \sqrt{x^2} = x
\end{align*}
\]
They both simplify down to \(x \), but are not the exact same function as they have different domains. The domain of \(h(x) \) is \([0, \infty)\) since we cannot input negative numbers into \(\sqrt{x} \) which is the inside function of the composition. On the other hand, the domain of \(k(x) \) is \((-\infty, \infty)\) because our input goes into \(x^2 \) first which has a domain of all real numbers.

Example 2

Given \(f(x) = x^2 - 4 \) and \(g(x) = \sqrt{x} \). For our composition \(h(x) = g(f(x)) = \sqrt{x^2 - 4} \) we have an inside function that has a domain of all real numbers, but an outside function that has a domain of \([0, \infty)\) so we must make sure that we only get non-negative numbers from our inside function. Now \(f(x) = x^2 - 4 \) is negatives for inputs between -2 and 2, so we must exclude those from the domain of \(h(x) \). Thus we get \((-\infty, -2) \cup (2, \infty)\) for our domain.

Find the following compositions, \(f(g(x)) \) and \(g(f(x)) \) and their domains.

1. \(f(x) = x^2, \quad g(x) = \frac{1}{x - 4} \)

2. \(f(x) = \sqrt{x - 4}, \quad g(x) = \frac{1}{x} \)